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Random Infinite-Volume Gibbs States for 
the Curie-Weiss Random Field Ising Model 

J. M. G. Amaro de Matos, ~ A. E. Patrick, 2'3 and V. A. Zagrebnov 2'4 

Received April 9, 1991; final July 11, 1991 

An approach tothe definition of infinite-volume Gibbs states for the (quenched) 
random-field Ising model is considered in the case of a Curie-Weiss ferro- 
magnet. It turns out that these states are random quasi-free measures. They are 
random convex linear combinations of the free product-measures "shifted" by 
the corresponding effective mean fields. The conditional self-averaging property 
of the magnetization related to this randomness is also discussed. 
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1. I N T R O D U C T I O N  

The descript ion of infini te-volume equi l ibr ium (Gibbs)  states of the models 
in classical statistical mechanics makes use of the general no t ion  of l imiting 
Gibbs  measures (states). These were characterized quite generally for the 

systems with "bona  fide" interact ions as measures by Dobrush in-Lanford-  

Ruelle (DLR)  equat ions;  see, e.g. refs. 1-5 and  Appendix A. For  such 
systems the whole set of l imiting Gibbs  measures coincides with the closed 

convex hull of the set of all weak limits of f ini te-volume Gibbs  measures 

(first in t roduced in refs. 6 and  7) subjected by local specifications to various 
bounda ry  conditions.  O n  the other hand,  for models of the mean-field type 
(like the Cur ie-Weiss  ferromagnet) ,  where the interact ion depends on the 
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volume and where there is no notion such as interaction in the infinite 
system, one cannot define limiting Gibbs measures via DLR equations. 
Therefore, to construct the infinite-volume equilibrium states in this case, 
one has to exploit weak limits of finite-volume Gibbs measures or 
Kolmogorov's existence theorem/5'8 10) 

In the case of a homogeneous external field a set of all limiting Gibbs 
states was constructed in ref. 8 for ferromagnetic Ising and in refs. 9 and 10 
for ferromagnetic n-vector Curie-Weiss models by means of a generalized 
quasi-average method. 

As indicated in ref. 11 and recently, in more general framework, in 
refs. 12 and 13, the Stcrmer-de Finetti theorem (14) allows one to charac- 
terize the infinite-volume states by the Gibbs variational principle for a very 
general class of homogeneous (quantum) mean-field systems. 

Recently there has been considerable interest in the rigorous study of 
the thermodynamics of lattice spin systems in the presence of frozen-in 
random external fields. (x5-19) This randomness is referred to as quenched. In 
contrast to a homogeneous field, quenched random-field models can 
manifest a very nontrivial behavior. Recently, the rounding effect of a 
first-order phase transition in quenched disordered systems has been dis- 
covered. (~9) Specific implications are found in random-field Ising model 
(RFIM). By refined arguments it is rigorously shown that for D~<2 an 
arbitrary weak quenched random field suppresses the first-order phase 
transition. For  all temperatures the infinite-volume Gibbs state (IVGS), for 
D ~< 2 RFIM, is unique for almost all (a.a.) field configurations. 

The aim of the present paper is to elucidate the problem of construc- 
tion and description of the set of IVGS for the Curie-Weiss version of the 
ferromagnetic RFIM. Though Curie-Weiss RFIM has been studied from 
different points of view (see, e.g., refs. 9, 10, and 20), including the problems 
of self-averaging and fluctuations, (16'2~'22) as far as we know, no complete 
constructive description of all its IVGS exists. 

Here we develop our approach to IVGS for the Curie-Weiss RFIM 
started in refs. 23 and 24 stressing that besides the random external field, 
these states depend on an additional random parameter. A particular 
manifestation of this additional randomness is violation of the self- 
averaging property, e.g., for magnetization. 

In ref. 23 we proposed the notion of conditional self-averaging to cover 
this case. 

Defini t ion 1.1. Let {~b,}n~>l be a sequence of random variables 
defined on a probability space (~,  ~ ( ~ ) ,  2). We say that this sequence is 
partially (conditionally) self-averaging if there exists a sequence of finite 
partitions {~,  = {DI")}~=I},~>~ of the space ~ such that for conditional 
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expectations {E((~,[~,)},>~I we have the following convergence in 
probability 2: 

lim (~bn - E(~b. j ~ ) )  ~ O 
n --~ o o  

and tim, ~ oo 2(D} ")) exists for each i =  1, 2 ..... k. 

Remark l . l .  The above construction is equivalent (see, e.g., ref. 25) 
to the following: there is a random variable ~b defined on a probability 
space (N', ~ (N ' ) ,  2') such that: 

(i) ~b, a ~b in distribution as n --* Go. 

(ii) There exists a finite partition ~ = { D 1 , D  2 ..... Dk} of ~ ' ,  
- - Z  k generated by the random variable ~b, i.e., ~b(.)- i=1 ydD~(.), 

where ID(.) is the indicator of the event D and U~= 1De = N'. 

If this partition is trivial, k = 1 and N = N', then one gets the standard 
self-averaging. (16'17) In this case d-convergence in (i) is equivalent to the 
convergence in probability 2 and one can often prove the convergence with 
Pr = 1, i.e., 2-almost sure (2-a.s.); see, e.g., refs. 15-17. 

The main thesis developed in the present paper is the following: the 
IVGS for the Curie-Weiss RFIM are random measures (on the space of 
infinite spin configurations with corresponding a-algebra of measurable 
subsets) which, as random elements, are defined on an appropriate 
probability space; see Section 2. There we introduce a general concept of 
random IVGS and propose two definitions of them (see Definitions 2.1 and 
2.2) relevant to the problem. Two points are important there. The first is 
the view of the IVGS as accumulation points of the sequences of finite- 
volume Gibbs measures. The second is to consider the random IVGS as a 
limit of the random finite-volume Gibbs measures corresponding to a 
sequence of the RFIM Hamiltonians. In Section 3 we illustrate the 
relevance of Definition 2.2 to the case of random IVGS for the Curie-Weiss 
RFIM. The regularity condition that is the key to the correctness of our 
construction (see Theorem 3.2) resembles the consistency condition by 
Aizenman and Wehr. (19) The structure of the random IVGS is analyzed in 
Section 4. Using the explicit representation for the finite-volume Gibbs 
state, we show that the IVGS for the Curie-Weiss RFIM are random 
mixtures of the pure states which are infinite product measures correspond- 
ing to the free Ising model in homogeneous fields. In Section 5 we consider 
a particular example when the external field is a stationary sequence of 
dichotomous random variables. The thermodynamics of this model was 
investigated in ref. 20. In Appendix A we collect some basic definitions and 
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properties of the probability measures on the space of the infinite Ising spin 
configurations (limiting Gibbs measures). The Laplace method for the case 
of Curie-Weiss RFIM is presented in the expositive Appendix B. 

2. SETUP A N D  S T A T E M E N T  OF THE PROBLEM 

Let (O, d ,  p) be a probability space and let h(.)=-{hs(.)}s+ z be a 
sequence of independent identically distributed (R-valued) random variables 
(i.i.d.r.v.) defined on this space. Here Z is an arbitrary integer lattice and 
the distributions Fhj(x)-p{~o: h/(og)~<x} are identical for all j e Z .  Then 
the probability space (R z, ~ ,  2) with the Borel a-algebra ~ = :~(R z) and 
the infinite product measure d2 = lq/+ z dvj with identical one-dimensional 
marginals dvj(x)=Fhj(dx) corresponds to the random field of configura- 
tions h(.): (2-~R z. Below we shall denote by h(og) (or simply by h for 
short) a realization of the random field h(. ), which corresponds to o s/2. 

Let A c Z be a finite subset with cardinality ]AI =N. Then the free 
Ising spin system in the external field h(co), meg2, is defined by the 
Hamiltonian 

H~)(sA;h(o~))= - ~  h/(og)sj, s#= +1 (2.1) 
j ~ A  

where SA={Sj}/~A~SaA--{--1; +1} A. Hence, by the definition of the 
Gibbs state [see Appendix A, Eq. (A.1)] the finite-volume free Gibbs 
measure for a fixed configuration h(co) has the form 

exp(3sihj(c~ ) ) (2.2) p ( A 0 ) ( s A ;  h(~o)) =L5 ]-[ 2 cosh/~h+(~o) 

The Hamiltonian (2.1) and the measure (2.2) for the free RFIM are inde- 
pendent of the external spin configurations s z [cf. (A. 1 )]. The Curie-Weiss 
RFIM corresponds to the perturbation of (2.1) by the Curie-Weiss (CW) 
ferromagnetic interaction: 

1 
HA(sA;h(~o)): --2---N ~ siss-  ~ hs(~ (2.3) 

i, j E A  j ~ A  

Here we impose the empty external conditions, otherwise the Hamiltonian 
(2.3) is ill-defined because of the infinite-range interaction. 

The equilibrium properties of the system concern infinite-volume Gibbs 
states corresponding to typical configurations of the external field h(.) 
and the free energy density f(/~;h(co)) in the thermodynamic limit, 
t-lim( �9 ) = lima T z : 

f(3;h(co))= t-lim - -svln ~ exp['-3HA(s";h(co)) (2.4) 
S A ~ 5 aA 
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By the strong law of large numbers (SLLN) (see, e.g., ref. 25), the free 
energy density (2.4) for the free RFIM (2.1) is X-almost surely (2-a.s. or 
with P r =  1) independent of the fixed configuration h(co) (self-averaging) 

f~o)(fl; h(.)) ~-~-~ - f l  ~ fR~ F~,(dx) ln(2 cosh fix) (2.5) 

To construct for (2.1) the infinite-volume Gibbs states, we can follow the 
standard scheme outlined in Appendix A. 

Let 

~=~IA~ {g,},~, ~=Z\A 

be a spin configuration outside A and ~(,~) be the set of infinite spin 
configurations coinciding with a fixed g~ for i e zl. Then the extension of the 
measure (2.2) to the Borel cr-algebra ~(SP), 5 ~ = 5 pz, is 

P~!~(A; h(c~)) = ~. P~(sA; h(c~)), A ~ ~(Se) (2.6) 
S A E ~ZA(A c~ d;~(g)) 

Here TCA: S'--~S A, Let CI(B) be a cylinder set with support I and base 
BeS~z. Then by (2.2) and (2.6) one finds that for CI(B)eC(5~) 

exp[flsjhj(co)] _= p~O)(C,(B); h(o~)) (2.7) 
P~~176176 jOz 2cosh flhj(co) 

is independent of g~ for all A _  L Therefore, by Proposition A.1 the prob- 
ability measure P(~ is a unique weak limit of the sequence 
{p~o)(.; h(co)))ac z when A 1" Z, for any fixed configuration h(co). Hence, 
by Definition A.1 for each fixed configuration h(co) the probability measure 
p~0~(.; h(co)) on ~ ( 5  p) is a unique infinite-volume Gibbs state corresponding 
to the free Ising spin system (2.1). 

Remark 2.7. Let the Hamiltonian HA(SA; h(co)) be independent of 
the configuration outside A. Then, in spite of the explicit dependence of 
the extension PA, s(.;h(co)) on g~, the limiting measure P( . ;h(co))= 
t-lira P~.~(-; h(~o)) is independent of configuration g. To verify this, notice 
that for any cylinder set C1(B) with support I c A  one gets 
~A { C, (B) n 5P~(~) } = ~A (C, (B)). Therefore, 

PA,~(C,(B); h(~))= Z PA(SA; h(~o)) 
s A ~ ~ A ( C z ( B ) )  

[-cf. (2.6)] is independent of g. By Proposition A.1, measure P(-; h(co)) on 

822/66/1-2-10 
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the measurable space (5 a, N ( ~ ) )  is uniquely defined by its values on the 
cylinder sets: 

{ t-lira PA.~(CI(B); h(co))},= z.8~ s~, 

It is clear that we obtain the same result if we follow the line of 
reasoning of Proposition A.2. The family of marginals 

p(~)(B; h(co)) = lim P(A~ ~9 ~ h(co)) = P(~ h(co)) (2.8) 
A]'Z 

Be~(sPr) ,  IF[ < 0% satisfies the conditions of Proposition A.2 and the 
limit (2.8) is unique for a fixed configuration h(co). The corresponding 
IVGS is again a unique infinite product measure p(O)(.; h(co)) [see (2.7)] 
indexed by configurations of the random field h(.). 

The above observation could motivate the following generalization of 
Definition A.1 for systems with Hamiltonians depending on random 
parameters, e.g., on the random external field h(. ) defined on probability 
space (f2, ~ ,  p). 

Definition 2.1. If for a fixed boundary condition g and for 
p-almost all co the sequence of probability measures {/5 (.; h(co))}n ~1 on 
~ ( 5  p) has a unique weak accumulation point P~(-; h(co)), then we call the 
random measure Pg(.; h(-)) a random infinite-volume Gibbs state for the 
random Hamiltonians HA,~(sA; h(-)). 

If there is a set A c ( 2 ,  p (A)>0 ,  such that the sequence 
{PA,s('; h(co))}A, for co e A, has more than one (weak) accumulation point, 
then we encounter difficulties in interpreting them as realizations of some 
random IVGS, i.e., a measure-valued random element defined on the 
probability space ((2, d ,  p). 

Romark 2.2. Let the DLR equation for the random Hamiltonians 
{HA, s(sA;h('))}A [see (A.2)] have sense for p-almost all (p-a.a.) coef2. 
Then we could resolve the above-mentioned difficulties by restricting con- 
sideration to some sufficient subset of boundary conditions g. Let the DLR 
equation have solutions {P~(.;h(co))}~A(~ ~ for p-a.a, meg? and there 
exists the set {gu}u~M of boundary conditions (sufficient subset) that the 
set of the weak accumulation points of the sequence {PA,~('; h(co))}A=Z 
reduces to the unique measure Pc(.; h(co)) for any ge {s ,}u~ t  and 

= { P = ( . ;  

for p-a.a, co ~ (2. Then for any boundary condition ~ , / ~  ~ M, we can define 
a random IVGS as a measure-valued random element P~,(.;h(co)); see 
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Definition 2.1. If card M >  1, then the random infinite-volume Gibbs state 
is nonunique. 

But for the CW RFIM (2.3) the situation is even worse: we cannot use 
the DLR equation in this case (see Remark A.1) and the only reasonable 
boundary condition for this model has to be empty, i.e., no spins outside the 
set A. Formally this corresponds to {si = 0 } i ~ ;  see (2.3). The above obser- 
vations motivate the proposal of another construction defining IVGS for 
random spin systems, in particular, for RFIM. 

D e f i n i t i o n  2.2. Suppose that for any cylinder set CEC(5: )  ran- 
dom variables {/sA.~(C; h(.))}a on (f2, sO, p) converge (for A TZ) in some 
o-sense to the random variable Ps(C; .) on (X, N(X), r). If for r-a.a, z e X  
there exists a probability measure P( ' ;X) on ~ ( 5  ~ such that 
P(C; z)=Pe(C; )~) for any CeC(Se), then the random measure P(.;  .) we 
call a random infinite-volume Gibbs state, corresponding to the family of the 
finite-volume Gibbs states {/SA,~(-; h(-))}A. 

Here we have to detail the boundary conditions denoted by g. For CW 
ferromagnets they are "empty" and we shall drop g. The second point is to 
specify the ~ E.g., for the free RFIM, ~ means p-a.s. (even for 
all co E O). Then D = X, a (unique) probability measure P(.;  co) exists, and 
Definition 2.2 gives the same as Definition 2.1. 

3. C U R I E - W E I S S  R A N D O M  FIELD IS ING M O D E L  

For any fixed co el2 by the standard linearization trick (26) the 
finite-volume Gibbs state for the Hamiltonian (2.3) and empty boundary 
condition can be expressed as [cf. (2.2).] 

PA(s~; h(o))) = f,,, #~(dy; h(~)) P~(sa; h(~o) + y) (3.1) 

Here (h(co)+ Y)j~z = hi(co)+ y and I~A(dy; h(o))) is a probability measure 
with density 

gA(dy; h(co)) exp[- f iNGA(y;  h(co))] 

dy - J'R' dy exp[ -flNGA(y; h(co))] 
(3.2) 

where 

1 2 1 
Ga(y; h(co))=~y -~--~ ~ In cosh[fl(hj(co)+ y)]  

j e A  
(3.3) 
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Now, using (2.6), (2.7), and the explicit expression (3.1) we can extend the 
finite-volume Gibbs measure (3.1) to the Borel ~r-algebra ~(Sp): 

PA(A; h(co)) = fnl IJA(dy; h(o))) P~,~(A; h(co) + y), A 6 ~ ( 5  ~) (3.4) 

Here g is any infinite confinite configuration. [As mentioned in Remark 2.1, 
in our case the limiting measure P(. ;  h(co)) is independent of extension.] 
For the measure of any cylinder set CI(B), I~A,  Bc_Se* one gets 
[cf. (2.7)] 

PA( CAB); h ) =  IRl /~A(dy; h) P(~ h + y) (3.5) 

By compactness arguments (see Proposition A.1) for any fixed configura- 
tion h and A] 'Z,  there is at least one subsequence {PA,}A~TZ such that 
/~A~ ~ Pc~- 

To describe the limiting measures (infinite-volume Gibbs states) {P~}~ 
in an explicit way, we need the following statement. 

T h e o r e m  3.1. Let the probability measure dr, for the quenched 
random external field h (see Section 2), be such that Sl~l dr(x)Ix] < oe. 
Then for 2-a.a. configurations h there are subsequences {A~(h)T Z}~ such 
that I~A~(h)(dy; h) =~ I~(dy; h) and, 2-a.s., 

supp #~ ~_ JC/(v,/3) -- {Yo e R: min G(y) = G(yo)} 
yel l  

where [cf. (3.3)] 

l y  2 I~R G(y) =~ --fi 1 dr(x)in cosh[/~(x + y)]  (3.6) 

Proof. By Lemma B.1, for A 1" Z one gets GA(y; h) ~-,.si G(y) and this 
convergence is locally uniform in y e l l .  Hence, by definition (3.2) and 
Eq. (3.6), for any e > 0 there exists compact K ~  II such that for 2-a.a. con- 
figurations h and all large enough A ~ Z we have #A(R\K; h) < e. Then the 
first assertion of the theorem is a consequence of Prohorov's compactness 
theorem (25) for each h from the above-mentioned set of the 2-a.a. configura- 
tions. According to Corollary B.2, we have 

fR t IJA~(h)(dy; h) g(y) ~.-a.~ 0 

for any continuous function g with a compact support such that 
s u p p g ~ d g ( v , / ~ ) = { ~ } .  Thus, any accumulation point p~(dy;h) of 
the sequence {/~(dy; h)}  A has support in rig(v,/3). I 
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Corollary 3.1, For 2-a.a. configurations of the quenched field h the 
set of infinite-volume Gibbs states {P~}~ for the Curie-Weiss RFIM is 
nonempty and they are quasi-free, i.e., (linear convex) superpositions of the 
shifted free states [cf. (3.5)] 

P~(A; h) = fR, #~(dy; h) P(~ h + y), A ~ ~ ( Y )  (3.7) 

where weak limits {#~(dy; h)}~ are defined by Theorem 3.1. 

Proof. Let for a fixed h from the 2-a.a. configurations of Theorem 3.1 
PA=Ch) ~P'~" Then by this theorem there is a subsequence {PA..}A~. (where 
{A~ } is a subsequence of {A=(h)}) such that #A, ~ 1~=. For any cylinder set 
C~C(5 p) there is a large enough ,'~7= supp C that for all AT(=,d~) T Z we 
can use (3.5). Hence, by the weak convergence of the sequence {#~7}A~=n~ 
one gets -PA~,(C; h)-~ P~(C; h), where P~ is the quasi-free state defined by 
(3.7) and consequently PA~h~(C;h)~P,(C;h). The last observation, 
together with Proposition A.1, completes the proof for any Betel set 
A ~ ( S P ) .  | 

Remark 3.7. Let A/(v,/~)= {Y0(/~)}, i.e., the function (3.6) has a 
unique minimum. Then for 2-a.a. configurations h the sequences 
{PA(dy;h)}A have a unique (nonrandom) accumulation point 
#~(dy;h)=g(y-yo(fl))dy. Therefore, in this case we get for the 
Curie-Weiss RFIM the (unique) random IVGS (see Definitions 2.1 and 
2.2) which, according to (3.7), is a "shifted'free state." 

P~(A;h)=P(~ yo), A ~ ( Y )  (3.8) 

Remark 3.2. Let, for instance, Al(v, fl)={yol(~),yoz(fl)}; see 
Section 4 and example in Section 5. Then Theorem 3.1 describes a general 
structure of the weak accumulation points {#~(dy; h)}~ of the sequence 
{ItA(dy; h)}A for 2-a.a. h: 

lt~(dy; h) = w- lira #A,(h)(dY; h) = [t~b(y-- Yo~) 
A~(h)TZ 

+ (1 - t=) a(y - Yo2)] dy (3.9) 

Here the coefficients t~ e [0, 1 ] depend, in general, on the particular choice 
of subsequence {As(h)} for a fixed h(<~). 

Therefore, it is important to investigate the relevance of Definition 2.2 
for the case when the set d/(v,/~) contains more then one point. 

Let the ~ in Definition 2.2 coincide with 

PAC;h( . ) )  " , P ( C ; . ) ,  C E C ( ~ )  



148 Arnaro de Matos et  at. 

as A~'Z, in distribution. Here ~, a ,  ~ means that l i m , ~  Ef(~n)=Ef(~)  
for any bounded continuous function f ( . ) ;  see, e.g., ref. 25. Then, in 
general, (~, d ,  p) # (X, ~(X), - a ~ r) and PA(C; h ( - ) ) ~  P(C; .) means that 
P(C; . )  is a symbol (representative) of the family {Pc(C; .)}s of all random 
variables with the same distribution function r {Pc(C; .) ~< x} = 
r{P(C;.)<<.x), Vx~R. Therefore, in this case in general, the random 
variables 

pr(M;-) = d-lima T z PA(ZCA ~ ~ r  I(M); h(.)) 

do not inherit additivity or consistency of the finite-volume marginals 

{PA~AO~? ' (M);h( . ) )}A~r ,  M ~ ( ~  r )  

For example, the marginals Pr(M;') and p~(MxSe~\r;.), A~F, 
M e ~ ( 5 ~ r ) ,  can be realized on (X,~(X),r) as independent random 
variables. 

Suppose there exists measure #(dy;.) on (X, ~(X), r) such that for the 
random measures #A(dy; h(.)) we have 

fR ]~A(dy'~ h(-)) ~o(y) d fR~ ~t(dy; .) (p(y) (3.10) 

as A i" Z, and q0 e C(R). It is clear that if in the family of all possible (weak) 
d-limits of the sequence {#A }A wefix a representative/~*(dy; X), X ~ X, then 
for this unique and independent-of-F representative, the marginals 

p*(M; ~)= fRlkt*(dy; g) P(~ h(oJ)), M ~ ( 5  ~r) (3.11) 

for each fixed 2 = (g, co)~X• g2, are a consistent family of the probability 
measures on (Sf r, ~(Ser)), FcZ .  Hence, by the Proposition A.2 there 
exists a (random) probability measure on (5 ~, ~(SP)) that has the form 

P*('h(~o))=fRkt*(dy;z)P(~ (X, ~o)eXx s (3.12) 

Let I={il,  i2,...,in} be a finite subset of Z and D(li/)= 
( @ ~ = l h i k ) |  z \ l  be the subset of configurations {hi}i~z=h with the 
fixed realization @~=1 hik on L Then #A(dy; h[lii) is a random measure- 
valued function on the probability space (D(fii) , ~(D(fi l)) ,  ~ I j~z \ l v j )  
defined by restriction to D(lii):/~A( "; h I liz) = ~tA( "; h) I D(liz). 

The following statement establishes sufficient conditions for conver- 
gence of the random variables {PA(C; h(.))}A, C e C(Se), in distribution. 
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T h e o r e m  3.2. Suppose that for any finite subset I c  Z the sequence 
{/~A (dy; h(. )) } A satisfies the regularity condition for some measure #(dy;. ) 
[cf. (3.10)]: 

f.l #A(dy; h lfi,) ~o(y) a fR t/A(dy; X) q?(Y), q? 6 C(R) (3.13) 

as A ~ Z. Then for any cylinder set C6 C(5 p) and A T Z one gets 

/3A(C;h(.) ) a px(C;h(.))=fRl#(dy;z)p(O)(C;h(.)Wy ) (3.14) 

[see also (3.12)]. 

ProoL By Eq. (2.7) for any C~ C(6 e) we get 

P~~ h(. ) + y) = P(~ h,c ( �9 ) + y) E C(R) if supp C = Ic ~ A 

Here h/c-- h llc. Then by Eq. (3.5), /SA(C; h) = (P(~ h + Y)),A, where 
( - )uA =SR' PA(dy; h ) ( - ) .  Hence, by (2.7),/sA(C; h ) =  (P(~ hrc+ Y)),A 
and by the definition of restriction to D(hic) one has 

(e(~ hIc + Y))~A = fR ~ #~(dy; h I hzc) e(~ hz c + y) (3.15) 

Therefore, using the regularity condition (3.13), we get for (3.15) that 

(P(~ hzc+ Y))~a a ,  (p(O)(C; hlc+ y))~, (3.16) 

when A TZ. This proves the assertion (3.14) because P(~ 
P(~ h + y); see (2.7). �9 

4. R A N D O M  INFINITE-VOLUME GIBBS STATES 

To get explicit formulas, we consider a particular case when card 
~'(v,  fl)~< 2; see Remarks 3.1 and 3.2. 

T h e o r e m  4.1. Let h ( - )=  {h j ( . )eR1}j~z  be a sequence of i.i.d.r.v. 
[corresponding to external (quenched) random field for the Curie- 
Weiss model (2.3)] defined on the probability space (f2, d , p )  with 
v(x)=p{o)eg2: hj(co)~<x} satisfying SR~ dv(x)[xl < oo. Let the function 
G(y), (2.6), be such that J / (v , /~)=  {Yol, Yo2} and O~G(yoi)>0, i=  1, 2. 
Then the sequence {l~A(dy; h('))}A satisfies the regularity condition (3.13), 
where 

p(dy; Z) = {t(Z) fi(Y-Yol)+ [1 - t(Z)] 6(y-Yo2)} dy (4.1) 
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Here t ( . )~{0 ,  1} is a random variable t ( - )=  {0, 1} with P r ( t ( - ) = 0 ) =  
P r ( t ( . ) =  1)=�89 cf. (3.9). 

We start the proof with the following result�9 

Lernma 4.1. Let JC/(v, f l ) =  {yo~}~m~ and c?~G(yoi)= k ~ > 0  
(i = 1, 2 ..... m). If for each Yo~ ~/g(v,  fi) and for p-a.a. ~o ~ ~2 there exists the 
sequence t+0i ~''(A)}A such that ~yGA(yg~; h(o~))=0 and y(oA)--* YO~, as A TZ. 
Then the random variables 

AA(i, j; h ( ) )  = fl x /N  (A). �9 [ a A ( Y o e  , h ( . ) )  

- <A). h (4.2) --GA(Yo/, ( ' ) ) ] ,  i , j=l, 2,...,m 

converge in distribution, 

lim AA(i,j;h(.)) a= JV(0;D~) (4.3) 
AI"Z 

to the Gaussian random variables with zero mean and variance D~ and 
for 2-a.a. (d2=l-I /~zdvg) configurations h each of the events 
{AA(i, j; h) < - C }  and {AA(i, j; h) > C} occurs for infinitely many terms 
of the sequence {AA(i, j; h)}A for any C >  0. 

Proof. Expanding the function GA(y; h) of (3.3) around the point 
Yoi, one gets 

(A) 3 ,+o+ -.~o+J + O(yoi  _ y o i )  (4 .4 )  i ,  (A~. h) = d"GA(Yoi; h) ~"(A> ,, ~ 
U A ~ , Y  Oi n=0 dY n n! 

Now, applying the law of the iterated logarithm to the sum of the i.i.d.r.v. 

dGA(Yoi; h(. )) 1 
crA'i(h('))=- dy - N  ~ [Y~176 (4.5) 

l E A  

(here E[tanhB(yoi+h+(.))]=Yoi by definition of Yo+) we obtain that 
aA.i(h)=o(N -m+~) for 2-a.a. configurations h and e>0 .  According 
to LemmaB.4, for 2-a�9 configurations h we have the estimate 
y(A) = o(N-1/2+~). Therefore, we can represent (4.2) as follows: oi - Yoi 

1 I c~176 
AA(i,j; h ( . ) ) = ~  ,~A In cosh fl(yoi+h,(')) 

cosh fl(Yoj+h+( "_))~I+O(N_I/2 
- E l n  coshfl(yo++h,(. +~) (4.6) 
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Hence, the assertions of the lemma are a consequence of the central limit 
theorem and the law of the iterated logarithm. | 

Proof of Theorem 4.1. First of all, let us note that the existence of 
the sequence {y(o])}A, which we need for the validity of Lemma 4.1, is the 
assertion of Corollary B.1. Using the explicit formulas (3.2) and (3.3), we 
get for the "conditional" measure #4('; h(-)) I D(liz) the following represen- 
tation: 

#A(dy; h(-)l hi) 

I~j~i cosh/~(y + hi) exp[ -~NGA\I(y; h(. ))] dy (4.7) 
~,, dy I~j~, cosh fl(y +/ii) exp[-flNGA\I(y; h)(-)] 

where 

l y  2 1 
GA\~(Y;h('))=-2 ~N j~A\I ~ lncosh/~(hj( , )+y)  

Then, by the Laplace method (see Lemma B.3) and (4.2) we obtain for the 
left-hand side of (3.13) that 

I #A(dy;h(.)l[li)~o(y)=ta(h(.))~0(y(0A))+ [1 --tA(h(.))] 
JRa 

- (A)'~ O ( N - I )  X (PRY02 , + (4.8) 

as N ~ ~ ,  where the random variable 

2 (A) l ~ a y a . ( y o ,  ; h(-))71/ '  
tAh( . ) )=  1 + / z 2 ~  r 

. v y - . , . o .  ; h(.))_l 

• 1] cosh/~(y~oJ) +/ i j )  cosh ~(y~of ~ + hi(.))  
j~, cosh/~(y(of) + hi) cosh ~(y(o~ + h i ( ) )  }_1 

x exp[ -,,/-NAA(2, 1; h(. ))] (4.9) 

Therefore, using the conditions 8~G(yoi)>0, i=1 ,2 ,  LemmaB.1, and 
Lemma 4.1, for any e > 0 we can estimate by (4.9) the probability p~ 

p~= lim Pr{ tA(h( . ) )e [e , l - -e ]}  
N~oO 

~< lim Pr{IAA(Z,a;h(.))I<6} 
N~cx3 

1  exp( ) 
(27zD2;)1/2 f~_~.6] 
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for any arbitrary small 6 > 0. Hence, p~ = 0 and tA(h (.)) .a , t(-)E {0; 1 }, 
as A 1" Z, where, by symmetry of the distribution of the random variable 
(4.3), one gets P r{ t ( . )=  1} = P r { t ( . ) = 0 } = � 8 9  | 

Corollary 4.1. The random infinite-volume Gibbs state (3.12) in 
this case has the quasi-free form [see (3.14), (4.1)]: 

Pz( . ;h)=t(z)P(~ [ 1 -  t(Z)] P(~ h + Y02) (4.10) 

where t ( . ) =  0, 1 is dichotomous random variable with equal probabilities 
for 0 and 1. 

Remark 4.1. Distribution (4.10) is independent of the limiting 
convexity (strength of minima; see Definition B.1 ) limA, z c~2 GA(y(or h) = 

Y 

c~>0, i =  1, 2, in the vicinity of the minima {Yoi}i=l,2, as well as of their 
positions and finite configurations lij, hr [-see (4.9)]. A more complicated 
situation corresponds to the case when the type of at least one of the 
minima is greater then 1; see Definition B.1. 

Remark 4.2. If card dg (v , / 3 )=m>2 ,  then even in the case of 
minima of the first order we encounter a more complicated situation. Using 
the same arguments as above, we obtain that in the limit A T Z 

#A(dy;h(')l[b) ~ ~ t(~ ~] t(~ (4.11) 
i = 1  i = l  

For the coefficients t(~)( �9 )~ {0; 1 } a formula similar to (4.9) holds true. But 
in this case (m > 2), we have more than one random coefficient; see (4.11). 
Therefore, to get an explicit formula for i~(dy; .), we have to calculate a 
joint distribution for these coefficients. It turns out that {t(i)(')}m=l are 
dependent random variables and the calculation of the corresponding joint 
distribution is a rather difficult problem. 

Remark 4.3. If card ~((v;/~) = 1, we return to Remark 3.1 and get a 
(unique) random free Gibbs state (3.8). 

Summarizing the above, one concludes that the IVGS constructed 
above for the Curie-Weiss RFIM is a random mixture of the free states 
{p(O)(.; h(.) + Y0~)}m 1, which are pure product-measures; see Section 2. 
The problem of decomposition of the IVGS into pure (extreme) Gibbs 
states is one of the main questions of this theory. (1-5) The standard 
approach for scanning all limiting Gibbs states is to change boundary 
conditions g.(1 7) We indicated there (see also Section 2) that for the CW 
ferromagnet the only admissible one is the empty boundary condition. As 
was discovered in refs. 8 and 9 (see also ref. 23), selection of the different 
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IVGS of the Curie-Weiss-Ising model can be realized by a different choice 
of the infinitesimal external fields (the generalized quasi-average method). 
This means that instead of (2.3) one has to consider the perturbed 
Hamiltonian 

ho 
H(AP)=HA($A;h('))+ N-p 2 Si, p > 0  (4.12) 

i~A 

Then the function (3.3) takes the form G(AP)(y; h(. )) = GA(y; h(-) - hoN-P). 
Hence, expanding GA(y; h(. ) - hoN-P), one gets 

1 
G (AP)(y; h(-)) = GA(y; h(. )) + ho N-~ ~ j~A tanh[f l(y + hj 

+OhoN-P)], 0 < 0 < 1  (4.13) 

By the SSLN, the last term in (4.13) does not influence the 2-a.s. 
convergence of (4.13) to G(y); see (3.6). But it can drastically change the 
limiting distribution of the variable 

A(P)(i, j ; .  ) = d-lim A(AP)(i, j; h(. )) 
ATZ 

= d-lim {fix/-~ I-~(p)( ' L ~ A  t.yoi(A)'h('))--(;(P)t"(A)'h('))]}, (4.14) ~A ~.~" Oj A?Z 

Using the line of reasoning of Lemma 4.1, we distinguish the following 
cases: 

(a) p > 1/2. Then the external field is switching out too fast to 
change the distribution of the random variable (4.14). So, 
A(~ j ;  ( . ) ) =  Jff(0; Dij ) [cf. (4.3)] and we get the same results 
(4.1) and (4.10) as for h0=0.  

(b) p = 1/2. Then by (4.13) and Lemma 4.1 we get for (4.14) that 

lim A(AP=I/2)(i,j;h(.)) & ~Ar(O;Du)+ho(Yoj- Yoi ) (4.15) 
ATZ 

Therefore, by (4.9) we obtain for the distribution of the 
dichotomous variable t ( . )~  {0; 1 } the following: 

1 { Ex+ho(yo2-yo,)32   
P r { t ( - ) = l }  (~Dzl )mj  ~ dxexp - (4.16) 

P r ( t ( . ) = 0 )  = 1 -  P r { t ( . ) =  1} 

(c) 0 < p  < 1/2. Now the external field in (4.12), (4.13) is switching 
out too slowly and formally corresponds to h o ~  ~ (as 
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h o r N  1/2 P) in the case (b). Then by (4.15) and (4.16) we get 
that { t (AP)(h(.)) } A converge to a degenerate random variable: 

lim t(f)(h(-)) ;" ..... {10 if sign[ho(Yo2- Yol)] = 1 (4.17) 
A~Z if sign[ho(Yo2--Yol)] = - 1  

Consequently, the quasi-average method (4.12) gives the following limiting 
Gibbs states: 

(a) co > 1/2) Px ( . ; h ( . ) ) = P ~ ( . ; h ( . ) ) ;  see (4.10). 
(b) co= 1/2) . h Px (" ( "))=t(Z)P(~176 y~ 

where by the amplitude ho in (4.12) we can vary the distribution 
of the dichotomous random variable t ( . ) e  {0; 1} from 
P r ( t ( . ) = 0 ) = l / 2  for h o = 0  to P r ( t ( . ) = 0 ) = 0  or 1 for 
ho(Yoz-Yo~)--* +_oe, respectively [see case (c)]. 

(c) P(xO<m)(.;h(.)) coincides, in this case, with one of the pure 
states p(O)(.; h(-) + Yol) or p(O)(.; h(. ) + Yo2) according the rule 
(4.17). 

Thus, summarizing, we get the following statement about the structure of 
the random IVGS for the Curie-Weiss RFIM in the case when card 
J{(v; fl) ~< 2. 

T h e o r e m  4.2. Assume that the conditions of Theorem4.1 are 
satisfied. Then by the quasi-average method (4.12) one gets that the 
infinite-volume Gibbs states for the Curie-Weiss RFIM are the random 
mixtures of pure (free) states: 

Pz(A; h(. )) = t(Z) P(~ h(. ) + Yo~) 

+ [1 - t ( g ) ]  PC~ A~M(5 e) (4.18) 

Here the dichotomous random variable t ( . )~  {0; 1 } has distribution (4.16) 
defined by the "fading out" of the infinitesimal external field in (4.12). The 
extreme cases p > 1/2 and 0 < p < 1/2 correspond formally to ho = 0 and 
ho ~ _+ o% respectively. 

Remark 2.4. By t ( - ) [ 1 -  t( . )]  = 0 one gets that for each realization 
of z EX the state (4.18) is pure. So, in contrast to the nonrandom CW 
model, (8-1m the coefficients in the decomposition (4.18) can never be 
mixing, i.e., 0 < t(Z) < 1. 
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5. E X A M P L E  A N D  D I S C U S S I O N  

First we illustrate our results for the simple case of the dichotomous 
fields, with probability density 

dv( h )/dh = 1/216(h - H) + a( h + H)]  

It is clear that in this case function GA(y; h) [see (3.3)] may be rewritten 
a s  

1 1 

i = 1  

where G(y) is an even function given by (3.6), and g(y) is the odd function 

, fcosh[f l (y+H)] '~ 
g(y) = m ~ ~ _ - - ~ - ~ }  

Here f l - l =  0 is the temperature of the system. 
This model has been carefully studied by Salinas and Wreszinski, (2~ 

and it has been shown that there is Hc= 1/2 such that for H >  H c the 
function G(y) will have only one global (quadratic) minimum of the type 1 
at y = 0 ,  i.e., m =  1, k =  1; see Definition B.1. 

For  O<~H<<,H c there is a decreasing continuous function Oc(H) of 
critical temperatures such that 0c(0) = 1 and Oc(Hc) = 0; for 0 > Oc(H) the 
system is in the paramagnetic phase, while for O<Oc(H) the function 
G(y) has two different symmetric global minima of the type 1 ( m = 2 ,  
kl =k2 = 1). See Fig. 1. 

At the curve 0~ = Oc(H ) the situation is the following. There is H, > 0, 
H, < Hc, such that if H <  Ht, G(y) has one global minimum of the type 2 
(m = 1, k = 2) at y = 0. If H = Ht, again there will be only one global mini- 
mum at y = 0, but of the type k = 3. This is a so-called tricritieal point. 
Finally, if Ht < H<~ Hc, then G(y) will have three quadratic global minima 
( m = 3 ,  k l = k z = k 3  = 1), one at y = 0  and the other two symmetric. See 
Fig. 1. 

In all the cases when m = 1 (k = 1, 2) we get a (unique) random Gibbs 
state which coincides with the free Gibbs measure p(O)(.; h) because Yo = 0; 
see Remark 4.3. The same follows immediately from the representation 
(5.1): g ( y o = 0 ) = 0  and GA(Yo;h(.)) is independent of h. Hence, Defini- 
tions 2.1 and 2.2 in this case coincide. 

If m =  2, kl.2 = 1, then the problem of the structure of the IVGS 
is completely resolved by Theorem4.1 and Corollary4.1 (see also 
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Fig. 1. Phase diagram for the Curie-Weiss RFIM with h i = _+H and the evolution of the 
shape of the function G(y) [see (5.1)] near the bottom. The solid line corresponds to the 
critical points. The points on the dashed line correspond to the first-order phase transitions. 

Remark  4.1). Again, one could deduce these results directly from the 
representat ion (5.1) and the simple structure of  the r andom variable 

AA(2, 1 ;h( - ) )  -g (y~  1 ~A hi(.) ,  
H , j ~ j  Yo2= - Y o l = Y *  > 0  

[-see (4.6) and (4.9) or  (B.5) and (B.6)]. Then by (5.1) one has the events 

{h: ~ ~,,(A). h) > ( < )  (~" aA(Yo2 , h)} U A  ~,.)' 0 1  

1 
= {h: cA =sign (--~/~A hO = + (-- ) l } 

Therefore, by the central limit theorem for (1 /x /N)  ~j+A hj(, ) one obtains 
f rom (4.9) that  P r { t ( . ) = 0 ,  1 } = 1 / 2 .  Using the quasi-average method 
(4.12), we can change this distr ibution as explained in (4.16). 

Fo r  m = 3 (kl, 2, 3 = 1), GA(Yo2 = 0; h ( . ) ) =  G(Yo2 ) and this min imum 
has to be taken into account  together with -Yol  = Yo3 = Y* > 0 if the event 
{h:(1/x//N) Z/~Ah/~O} occurs as A T Z ;  see Corol laryB.2.  But the 
probabil i ty of this event is zero and by the above arguments  we get 

lim P r [ h :  ~ t"(A)'h)<min[GA(Y(oA);h), - (A) GA(Y03 ; h ) ]}  ' ~  A L Y  0 1  
A I " Z  

= ~ ~"(A)" h ) ] }  = �89 lim Pr{h:  ~At)'o3 ~ ( ,,(A)., h) < min[GA(y(oal); h), ~'At+O2 , 
A T Z  
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Therefore, in decomposition of the random IVGS we get three 
dichotomous random variables { t (~  but in contrast to 
Remark4.2, the correlations between them are trivial because of 
Pr{t(2)( �9 ) = 0} = 1. Hence, t ( 1 ) (  �9 ) = (1 - t ( 3 ) (  �9 )) and Pr{ t(~)(.) = 0, 1 } = 1/2. 
Again, using the quasi-average method (4.12), one can change these 
distributions. 

For this exactly soluble model we can investigate the relation between 
IVGS in the sense of Definition 2.2 and the compactness arguments; see 
Corollary 3.1 and Remarks 3.1, 3.2. 

For m = 1 ( k =  1, 2) these arguments lead to the same result implied 
by Definitions2.1 and 2.2; see Remark3.1. If m = 2  (k~,2=l),  then by 
Corollary B.2 we get 

fRl #a(dy; h) qg(y) = tA(h) qg(y(o A)) + I-1 -- tA(h)] q~(y (o~)) + O(N -~) (5.2) 

where A T z and 

2 (A). 1/2 } 1 
[@GA(Yo, ,h)] e x p [ _ x / ~ A A ( 2  ' l ' h ) ]  (5.3) tA(h ) = 1 + 2 (m. L~,GA(yo2, h)J 

For 2-a.a. fixed he  { - H , H }  z and any fixed k ~ Z  1 one can choose a 
subsequence {A(,k)(h)}, so that 

hj = kH,  [A(~k)(h)l = N(~k)(h) (5.4)  
j ~ A~k)(h) 

and N(f)(h) -~ oo, as n --, oo. Below we put A(~k)(h) = A, and N~k)(h) = N, 
for short. Then we get [see (5.1)] 

k 
GA~ h ) =  G(y)-~---d-~7-.~ g(Y) (5.5) 

zpivn 

and the equation 

1(1  + k H 1 y = ~  ~ )  tanh fl(y + ) +  ~ ( 1 -  ~ -~ , ) t anh /~(y-H)  (5.6) 

which defines the minima { ,,(A.)t Using the same line of reasoning as .Y01 J i=l ,2-  
in the proof of Lemma B.4, we get the results 

1 
YO An = Y o i " ~ n  --i h'(n), i =  1, 2 (5.7) 
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where {c~l n)} are some bounded sequences. As mentioned above, in our 
case -Yol = Y02 = Y * >  0. Here y* is a positive solution of the equation 

y = �89 [tanh/?(y + H) + tanh/~(y - H)]  

Therefore, when AnT Z, we obtain from (4.2), (5.3), and (5.7) that 

tA,(h) = {1 +exp[-kg(y*)]} 1~ O(N2~) (5.8) 

Hence, in the case m = 2  the set {#~(dy;h)}~ of all weak accumulation 
points for the measures {#a(dy; h)}A can be described as 

{(1 + e x p [ - k g ( y * ) ] )  1 6(y + y*) + (1 + exp[kg(y*)]) -~ 6 ( y -  Y*)}k~ z~ 

(5.9) 

The corresponding family of the infinite-volume (quasi-free) Gibbs states 
has the form (3.7). 

In the case of m = 3  (kl,2,3 = 1) we have {yo~= -y* ;  Yo2; Yo3=Y*} �9 
By the same choice of subsequence {A(,k)(h)}, (5.4), using (5.5) and the 
arguments of Remark 4.2 and Lemma B.3, we obtain for the family 
{#=(dy;h)}~ of the weak accumulation points in this case the following 
representation: 

kg(y,)),~(y+ *) 

Here Zk(y*)=  1 +2cosh[�89 The corresponding family of the 
infinite-volume (quasi-free) Gibbs states again is described by (3.7). 

Finally, we discuss the problem of the conditional self-averaging for the 
Curie-Weiss RFIM; see Definition l.1 and Remark l.1. For m = 2  
(kl,2= 1) according to the line of reasoning of Theorem4.1 we get for 
the magnetization 

1 
mA(h)=~  Z ~ siPA(sA; h) 

i ~ A  sAE~  caA 

which is a random variable on the probability space (RZ;N(RZ);2) 
[see (3.1) and (4.8)], that 

1 
mA(h)= ~ ~ ~ tanh~(y(o~+hj).t(~J(h)+o(1) (5.11) 

i =  1,2 j ' ~ A  
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as N ~  oo. Here t(a2)= 1 - t ~  ), (4.8). By the same theorem one also gets 
that the random variables 

t(A1)(h) -- I~(2,1; h) > o 0 (5.12) 

as ATZ,  in probability. By (5.1) and by the definition of the random 

variable CA = sign((1/x/-N) ~]i~A hi) we obtain 

IAA(2,1;h)>( < )O--~" IcA= +(-- ) i  

Here I{.} is the indicator of the event {-}. So, using (5.11) and (5.12), by 
Definition 1.1 and Remark 1.1 we obtain for the magnetization that 

lim [mA(h)--U(mA(h)[cA) ] ) ,  0 (5.13) 
Ai'Z 

Therefore, for A large enough, it is close to the random variable which 
is a conditional expectation for given algebra generated by atoms 
D_+ (A)= {h: cA(h)= -t-1 }. This property we call the conditional (or partial) 
self-averaging of  magnetization (ref. 23; cf. ref. 22). 

For m = 3 (kl,2,3 = 1) [see (5.10)], by the above arguments about the 
structure of the IVGS, we get the same limit (5.13). 

APPENDIX  A 

Suppose that for each ie  Z of an arbitrary integer lattice Z, we have 
a copy ~ of the site-configuration space 5go = { -  1, 1 } (Ising spin). Then 
the product space 5 p = l-[~ z ~ is the space of the Ising spin configurations 
s = {s~}~ z for the system on Z. For any finite subset A c Z we define a 
projection rcA:s--, sA= {S~}~A; IAI < oo is the cardinality of A. 

Let I , =  { i~,..., i,} o Z .  Then CI,(Bn) =- {s~.~;  {Si}i~i EBn ~ f f  I"} is a 
cylinder set in 5" with base B, and support In. If we denote by ~ (5  ~) the 
a-algebra of the subsets in 5 e generated by all cylinder sets C(5~ then 
(5 #, M(Sa)) is a measurable space. 

Proposition A.1. The set j//(Se) of all Borel probability measures 
on the measurable space (Se, ~)(Se)) is compact with respect to the topol- 
ogy of weak convergence and P,  ==- P in J//(6 e) if and only if P,,(C) ~ P(C) 
for all cylinder sets C~ C(6e). 

Let 5f~(~) = (s~SP:ss=gj,  j ~ A = Z \ A } .  Then the s e q u e n c e  {Pn}n~l 
is specified by the extensions (PA,,~(')},~>I on ~(Sf)  of the finite-volume 
Gibbs measures {PA,,~(. ) }, >1 1 for increasing sets An c An + 1, A, T z.  Here 
PA,,s(A) = PA,~(nA(A ~ 5f~(~))) for A E ~(Se). 

822/66/1-2-11 
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The finite-volume m e a s u r e  PA,s for the temperature /3-1 is defined by 
the Gibbs ansatz: 

pA,~(sA) exp{ --/~HA(sA I ~ ) )  (A.1) 

where HA(s~lg z) is the Hamiltonian of the system in the finite vessel A 
with the external (boundary) condition ~A= ~z(g). 

D e f i n i t i o n  A.1. We say that the probability measure P on ~(5  P) 
is an infinite-volume Gibbs state for the system (A.1) if it belongs to the 
closed convex hull fr of the set of weak accumulation points of the 
sequence { PA.s(" ) } A = Z for A ? Z. 

Hence, the triple (5~, ~(5~), p) is the infinite-volume Gibbs probabil- 
ity space. (6'7) 

Remark A. 1. Recall that a probability measure P on ~ (5  ~) is called 
a DLR state (limiting Gibbs measure u-5)) for the system (A.1) if for each 
finite set A c Z and configuration s a t  sPA the corresponding conditional 
probability with respect to the o'-algebra Bz(5") generated by all cylinder 
sets with supports I c  A satisfies the DLR equation: 

P{~A'(SA) I ~ ( ~ ) } ( s )  = PA,,(sA) (A.2) 

P-almost sure, for S A = s l A  and sA=s lA;  cf. (A.1). 
If P is a measure on ~(SP), we define its projections (marginals) 

p r = P o ~ r l  on N(5~r) by pr(A)=P(zcrl(A)),  A ~ ( s P r ) .  If A c F ,  then 
by definition of the cylinder sets one gets ~z~l(B)=zCrl(BxSe r\~) for 
B e ~ ( 5 ~ ) .  Therefore, measures p~ and Pr are related by the consistency 
conditions: 

pA(B)=pr(BXS~r\a), B~(5~ ~) (A.3) 

By the Kolmogorov theorem (see, e.g., ref. 25) one can reverse this proce- 
dure and construct on N(5 p) a probability measure using the marginals 
satisfying (A.3). 

Proposit ion A.2 (Kolmogorov 's  Theorem) .  Let {Pr}r=z, 
IF I < c~, be a family of probability measures on {~(st~r)r=z which are 
consistent in the sense of (A.3). Then there exists a unique probability 
measure P on ~ ( J )  such that Pozcrl= Pr for all finite F c  Z. 
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A P P E N D I X  B 

Here we list the statements about the Laplace method which are 
needed in Sections 3-5. The main difference from the standard Laplace 
method (see, e.g., ref. 28) is contained in the randomness of the function 

GA(y; h ) = ~  y2--~N j~  ' lncosh[fl(hj+ y)] (B.I) 

where the random field h = {h~}i~ z is the sequence of i.i.d.r.v, in the prob- 
ability space (RZ,~(RZ),  2). Here 2 is the infinite-product measure: 
d2 = f I j~  z dvj with identical one-dimensional marginals v(x )= Pr{hj ~< x}. 

k e m m a  B.1. Let the probability measure v be such that 
~R dr(x)Ix[ < oe. Then the function G(y) = �89 _ fl-1E~{1 n cosh[fl(hj + y)]  } 
[cf. (3.6)] is infinitely differentiable on R [G ~ C~ and 

t-lim3~yGA(y;h) ;-as ?~yG(y), k>~O (B.2) 

uniformly on any compact K c  R. 

C o r o l l a r y  B.1. If yoE(a,b) ,  C?yG(yo)>0, and G ( y o ) < G ( y )  for 
y ~ (a, b) and y # Yo, then there is No such that, for N >  No and for 2-a.a. 
h E R  z, there is a sequence {y(oA)}AC(a,b) such that GA(y(oA~;h)< 
GA(y; h) for y ~ (a, b) and y # Yo, and y(o A) ~ Yo, as A T Z, 2-a.s. 

De f in i t i on  B.1. Let y o u R  correspond to a minimum of the 
function f ( y )  and 

,I 
f ( Y )  = f(Yo) + ~ (Y - Yo) 2k + o [ ( y -  yo) 2k ] (B.3) 

as y--,  Yo. Following ref. 28, we call k the type and 2 = ~?2kf(yo)> 0 the 
strength of the minimum Yo- 

Below we list the statements which we need for the proof of 
Theorem 4.1. They are nothing but an extension of the standard Laplace 
method to the case when the measures {/zA(dy; h)}  A a r e  random. (22~ 

Lernma B.2. Let the function G(y) have on the interval (a, b) the 
minimum Yo of the type k = 1. Then there is a compact V= [- -6 ,  fi], 6 > 0, 
and functions YA = yA(t), Y = y(t)  on this domain such that 

. (A). h) -- GA(y(oA); h) -- t 2 GA(YA(t)) = GA(yA(t) + YO , 

G(y(t))  = G(y(t)  + Yo) -- G(yo) = t 2, t ~ V 
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In addition, ~?, yA(t = O) = [2/@G a(y(oA~; h)] */2 and C3']yA(t ) --~ ~?'/y(t), as 
A 1" Z, uniformly on V for n ~> 0 and 2-a.a. h e R z. 

[ -emma B.a. Let the conditions of Lemma B.2 be satisfied and in 
addition {q3A(y)} x c C2[a, b]. Then the integral 

IA(a, b) = f f  dy ~oa(y ) exp[ -fiNGA(y; h)] 

has the following asymptotic form for N ~  oo and 2-a.a. h sRZ: 

IA(a, b)= .. (A). { 2~Z ~/z 
exp[---flNGatf o ,h)] fiN82G A(Y(oa) ; h)j  

x [q)A(Y(o A)) + O(N-~)]  (B.4) 

C o r o l l a r y  B.2. Let {Y0,}i%~ be the set of global minima of G(y) of 
the equal types {k(yoi)= 1}7=, and {q~A(Y)}A c C2(R). Then one gets the 
following asymptotic form for the integral 

fR#A(dy;h) q)A(y) ~ [qOA(y(oA))+O(N-~)] WA"(y(oA)) (B.5) 
rn ( 4 )  

; :  ~ Z j=,  WA.;(yoj ) 

as N ~ oo. Here 

and h ~ R z. 

2~ -~ ~/2 
WA,,(y) = exp[--flNG~(y; h)] flNOZ~A(y; h)J (B.6) 

Finally, the fluctuations which appear due to the dependence of 
G~(y;h) on the random field configuration h ~ R  z are controlled by 
Lemma 4.1 and the following. 

L e m m a  B.4. Let Yo be a global minimum of G(y) of the type k-- 1 
and {y(oA~}A be the .sequence of minima of the functions {GA(y;h)}A, 
converging to Yo (see Corollary B.1). Then for the 2-a.a. configurations h 
we have asymptotically 

y~oA) yo=o(N 1/2+~) (B.7) 

as N--* c~, for an arbitrary small e > 0. 
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ProoL Let ~lA(y; h) = ( l / N )  ZS~A tanh [3(hj+ y).  Then by the defini- 
tion of the points y(o A~ and Yo we have 

Y(o " )  - Y o  = [ tPA(Y(oA) ;  h) -- 0A(Yo; h)] + [~'A(Yo; h) - Yo] 

= ~y~A(Yo + 0~(yo; h)(y~o A~- Yo); h) 

x (y(o A)-  Yo)+ EOA(Yo; h ) -  Yo] (B.8) 

where O < O A ( y ; h ) <  1 for any A, y and 2 -a . a .h .  By LemmaB.1  and 
Corol lary  B.1 for k = 1 there is No and the interval I-a, b]  ~ Yo such that for 
N > N o  one has y~oA)e(a,b) and c3yOA(y;h)~<7<l  for y s [ a , b ]  and 
2-a.a. h ~ R  z. Hence, using (B.8), we obtain for N ~  ~ (and 2-a.a. h) the 
following asymptot ic  relation: 

{11 } 
Y(o A~ - Yo = 0 1 - 7 N j~A [ tanh  fl(hj + Y0) - Ev tanh(hl  + Yo)] (B.9) 

Now,  the assertion of  the lemma is the consequence of the law of the 
iterated logari thm applied to the arithmetical mean of the i.i.d.r.v, in the 
r ight-hand side of (B.9). [] 
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